AIMultiple ResearchAIMultiple Research

Manufacturing AI: 15 tools & 13 Use Cases / Applications in '24

Written by
Cem Dilmegani
Cem Dilmegani
Cem Dilmegani

Cem is the principal analyst at AIMultiple since 2017. AIMultiple informs hundreds of thousands of businesses (as per Similarweb) including 60% of Fortune 500 every month.

Cem's work focuses on how enterprises can leverage new technologies in AI, automation, cybersecurity(including network security, application security), data collection including web data collection and process intelligence.

View Full Profile
Manufacturing AI: 15 tools & 13 Use Cases / Applications in '24Manufacturing AI: 15 tools & 13 Use Cases / Applications in '24

AIMultiple team adheres to the ethical standards summarized in our research commitments.

The industrial manufacturing industry is the top adopter of artificial intelligence, with 93 percent of leaders stating their organizations are at least moderately using AI.

Manufacturers are frequently facing different challenges such as unexpected machinery failure or defective product delivery. Leveraging AI and machine learning, manufacturers can improve operational efficiency, launch new products, customize product designs, and plan future financial actions to progress on their digital transformation.

Why is AI important in the manufacturing industry?

Implementing AI in manufacturing facilities is getting popular among manufacturers. According to Capgemini’s research, more than half of the European manufacturers (51%) are implementing AI solutions, with Japan (30%) and the US (28%) following in second and third.

The same study also reveals that the most popular AI use cases in manufacturing are improving:

  • maintenance (29% of manufacturing AI use cases)
  • quality (27%)

This popularity is driven by the fact that manufacturing data is a good fit for AI/machine learning. Manufacturing is full of analytical data which is easier for machines to analyze. Hundreds of variables impact the production process and while these are very hard to analyze for humans, machine learning models can easily predict the impact of individual variables in such complex situations. In other industries involving language or emotions, machines are still operating at below human capabilities, slowing down their adoption.

The COVID-19 pandemic also increased the interest of manufacturers in AI applications. As seen on Google Trends graph below, the panic due to lockdowns may have forced manufacturers to shift their focus to artificial intelligence.

The graph displays manufacturing AI Google search trends.
Figure 1: Manufacturing AI Google search trends 1

What are the common AI use cases in manufacturing?

1. Predictive maintenance

Manufacturers leverage AI technology to identify potential downtime and accidents by analyzing sensor data. AI systems help manufacturers forecast when or if functional equipment will fail so its maintenance and repair can be scheduled before the failure occurs. Thanks to AI-powered predictive maintenance, manufacturers can improve efficiency while reducing the cost of machine failure.

2. Generative design

Generative design uses machine learning algorithms to mimic an engineer’s approach to design. Designers or engineers enter parameters of design (such as materials, size, weight, strength, manufacturing methods, and cost constraints) into generative design software and the software provides all the possible outcomes that can be created with those parameters. With this method, manufacturers quickly generate thousands of design options for one product.

3. Price forecasting of raw material

The extreme price volatility of raw materials has always been a challenge for manufacturers. Businesses have to adapt to the unstable price of raw materials to remain competitive in the market. AI-powered software like can predict materials prices more accurately than humans and it learns from its mistakes.

4. Robotics

Industrial robots, also referred to as manufacturing robots, automate repetitive tasks, prevent or reduce human error to a negligible rate, and shift human workers’ focus to more productive areas of the operation. Applications of robots in plants vary. Applications include assembly, welding, painting, product inspection, picking and placing, die casting, drilling, glass making, and grinding.

Industrial robots have been in manufacturing plants since the late 1970s. With the addition of artificial intelligence, an industrial robot can monitor its own accuracy and performance, and train itself to get better. Some manufacturing robots are equipped with machine vision that helps the robot achieve precise mobility in complex and random environments.

Cobots are another robotics application that uses machine vision to work safely alongside human workers to complete a task that cannot be fully automated. Feel free to learn more about cobots with our comprehensive guide.

5. Edge analytics

Edge analytics provides fast and decentralized insights from data sets collected from sensors on machines. Manufacturers collect and analyze data on edge to reduce time to insight. Edge analytics has three use cases in manufacturing:

  • Improving production quality and yield
  • Detecting early signs of deteriorating performance and risk of failure
  • Tracking worker health and safety by using wearables

To learn more about analytics in manufacturing, feel free to read our in-depth article about the top 10 manufacturing analytics use cases.

6. Quality assurance

Quality assurance is the maintenance of a desired level of quality in a service or product. Assembly lines are data-driven, interconnected, and autonomous networks. These assembly lines work based on a set of parameters and algorithms that provide guidelines to produce the best possible end-products. AI systems can detect the differences from the usual outputs by using machine vision technology since most defects are visible. When an end-product is of lower quality than expected, AI systems trigger an alert to users so that they can react to make adjustments.

How AI and machine vision technology supports quality assurance of manufacturing plants
Source: Capgemini

You can also check the lists of data annotation and AI/ML tools and services to find the option that best suits your project needs:

7. Inventory management

Machine learning solutions can promote inventory planning activities as they are good at dealing with demand forecasting and supply planning.  AI-powered demand forecasting tools provide more accurate results than traditional demand forecasting methods (ARIMA, exponential smoothing, etc) engineers use in manufacturing facilities. These tools enable businesses to manage inventory levels better so that cash-in-stock and out-of-stock scenarios are less likely to happen.

8. Process optimization

AI-powered software can help organizations optimize processes to achieve sustainable production levels. Manufacturers can prefer AI-powered process mining tools to identify and eliminate bottlenecks in the organization’s processes. For instance, timely and accurate delivery to a customer is the ultimate goal in the manufacturing industry. However, if the company has several factories in different regions, building a consistent delivery system is difficult.

By using a process mining tool, manufacturers can compare the performance of different regions down to individual process steps, including duration, cost, and the person performing the step. These insights help streamline processes and identify bottlenecks so that manufacturers can take action.

For example, a manufacturer that employed a process mining tool in their procure-to-pay processes decreased deviations and maverick buying worth to $60,000. 2 The firm also identified process automation opportunities for invoicing tasks by 75%.

9. AI-Powered digital twin use cases

digital twin is a virtual representation of a real-world product or asset. By combining AI techniques with digital twins, manufacturers can improve their understanding of the product and allow businesses to experiment in future actions that may enhance asset performance. There are typically 4 applications of digital twins in manufacturing:

10. Product development

Manufacturers can use digital twins before a product’s physical counterpart is manufactured. This application enables businesses to collect data from the virtual twin and improve the original product based on data.

11. Design customization

Due to the shift toward personalization in consumer demand, manufacturers can leverage digital twins to design various permutations of the product. This allows customers to purchase the product based on performance metrics rather than its design.

12. Shop floor performance improvement

A digital twin can be used to monitor and analyze the production process to identify where quality issues may occur or where the performance of the product is lower than intended.

13. Logistics optimization

Digital twins allow manufacturers to gain a clear view of the materials used and provide the opportunity to automate the replenishment process.

Manufacturing AI market overview

The Manufacturing AI market forms a dynamic landscape, showcasing a variety of tools with distinct goals and functionalities. Some tools are specifically designed for predictive maintenance, ensuring the seamless operation of machinery, while others excel in quality control, enhancing product precision. Certain tools specialize solely in optimizing manufacturing processes, while a comprehensive set addresses both manufacturing processes and supply chain optimization.

Manufacturing AI solutions can be categorized into three segments, aligning with the diverse objectives they fulfill within the manufacturing ecosystem. The market segments include:

1. Pure Play Startups: Within this category, nimble startups focus on developing specialized tools catering to specific aspects of the manufacturing process. These startups often introduce cutting-edge solutions for predictive maintenance, quality control, and streamlined manufacturing operations.

2. Scale-ups: Scale-ups, having successfully navigated initial stages, bring a mix of innovation and reliability. Their tools cover a spectrum of functionalities, from optimizing manufacturing processes to addressing supply chain challenges. This category offers scalable solutions to meet the evolving demands of the industry.

3. Big Tech Companies: Established technology giants, classified as big techs, wield extensive resources and technological expertise to provide comprehensive toolsets. These tools not only excel in predictive maintenance, quality control, and manufacturing processes but also contribute significantly to supply chain optimization. Big techs play a pivotal role in standardizing and widely adopting AI technologies across the manufacturing landscape.

For more, explore and compare top manufacturing AI solutions.

What are the benefits of AI in manufacturing?

Safety

Manufacturing is one of the highest-risk industrial sectors to be working in with more than 3,000 major injuries and nine fatalities occurring each year. The involvement of robots in high-risk jobs can help manufacturers reduce unwanted accidents.

Cost Reduction

AI technologies can reduce the operation costs of manufacturers due to several applications:

  • Leveraging AI technologies can enhance organizations’ analytics capability so that they can use their resources more efficiently, make better forecasts, and reduce inventory costs. Thanks to better analytics capabilities, companies can also switch to predictive maintenance leading to eliminating downtime costs and reducing maintenance costs.
  • This one is obvious but manufacturers don’t need to pay monthly salaries to robots. However, robots require CAPEX which needs to be weighed against the recurring cost of labor.

Faster decision making

Thanks to IoT sensors, manufacturers can collect large volumes of data and switch to real-time analytics. This allows manufacturers to reach insights sooner so that they can make operational, real-time data-driven decisions.

24/7 production in dark factories

Factories without any human labor are called dark factories since light may not be necessary for robots to function. This is a relatively new concept with only a few experimental 100% dark factories currently operating. However, dark factories will increase over time with the application of AI and other automation technologies since they have the potential to unleash significant savings, end workplace accidents and expand their production capacity.

Read more on AI applications in different industries:

If you still have questions on how AI revolutionizing the manufacturing industry, don’t hesitate to contact us:

Find the Right Vendors

External sources

Cem Dilmegani
Principal Analyst

Cem is the principal analyst at AIMultiple since 2017. AIMultiple informs hundreds of thousands of businesses (as per Similarweb) including 60% of Fortune 500 every month.

Cem's work focuses on how enterprises can leverage new technologies in AI, automation, cybersecurity(including network security, application security), data collection including web data collection and process intelligence.

Cem's work has been cited by leading global publications including Business Insider, Forbes, Washington Post, global firms like Deloitte, HPE, NGOs like World Economic Forum and supranational organizations like European Commission. You can see more reputable companies and media that referenced AIMultiple.

Cem's hands-on enterprise software experience contributes to the insights that he generates. He oversees AIMultiple benchmarks in dynamic application security testing (DAST), data loss prevention (DLP), email marketing and web data collection. Other AIMultiple industry analysts and tech team support Cem in designing, running and evaluating benchmarks.

Throughout his career, Cem served as a tech consultant, tech buyer and tech entrepreneur. He advised enterprises on their technology decisions at McKinsey & Company and Altman Solon for more than a decade. He also published a McKinsey report on digitalization.

He led technology strategy and procurement of a telco while reporting to the CEO. He has also led commercial growth of deep tech company Hypatos that reached a 7 digit annual recurring revenue and a 9 digit valuation from 0 within 2 years. Cem's work in Hypatos was covered by leading technology publications like TechCrunch and Business Insider.

Cem regularly speaks at international technology conferences. He graduated from Bogazici University as a computer engineer and holds an MBA from Columbia Business School.

Sources:

AIMultiple.com Traffic Analytics, Ranking & Audience, Similarweb.
Why Microsoft, IBM, and Google Are Ramping up Efforts on AI Ethics, Business Insider.
Microsoft invests $1 billion in OpenAI to pursue artificial intelligence that’s smarter than we are, Washington Post.
Data management barriers to AI success, Deloitte.
Empowering AI Leadership: AI C-Suite Toolkit, World Economic Forum.
Science, Research and Innovation Performance of the EU, European Commission.
Public-sector digitization: The trillion-dollar challenge, McKinsey & Company.
Hypatos gets $11.8M for a deep learning approach to document processing, TechCrunch.
We got an exclusive look at the pitch deck AI startup Hypatos used to raise $11 million, Business Insider.

To stay up-to-date on B2B tech & accelerate your enterprise:

Follow on

Next to Read

Comments

Your email address will not be published. All fields are required.

2 Comments
S S
Aug 31, 2021 at 07:08

Which AI programming tools are used mostly in manufacturing environment if there is no specific software coming from machine supplier?

Cem Dilmegani
Sep 19, 2021 at 13:39

The typical ML toolset would be applicable. Most manufacturing environment data is time series and would be processed by common ML or MLOps platforms like the tools provided here: https://aimultiple.com/ml-software
Data collection and quality issues can be bigger challenges in industrial settings.

Emil Somekh
Jun 21, 2021 at 03:15

We are implementing AI & ML in CNC job shop environment

Related research