AIMultipleAIMultiple
No results found.

AI Text Generation: Top 16 Use Cases & 4 Case Studies

Cem Dilmegani
Cem Dilmegani
updated on Aug 19, 2025

Generative AI, a subset of artificial intelligence, allows for creating new content, such as text, code, images, designs, and videos, by learning from and building on existing data.

Explore how generative AI can be used to generate content in the form of text via 4 use cases and 2 case studies of AI text generation..

AI Text Generation tools

* Based on data from B2B review platforms.

** Based on data from LinkedIn

Inclusion criteria: Only AI-based procurement software solutions with at least 20 reviews across B2B review platforms are considered.

Ranking: Products are ranked based on the number of reviews across B2B review platforms.

In the field of AI text generation, a variety of generation models from autoregressive transformers to retrieval-augmented and diffusion-based approaches play a central role.

Traditional models like GPT (Generative Pre‑trained Transformer) use a transformer architecture to generate coherent text by predicting the next token in a sequence. Encoder–decoder models such as T5 (Text‑to‑Text Transfer Transformer) convert all language tasks into a text-in, text-out format, facilitating flexible applications like translation, summarization, and code generation.

Furthermore, retrieval‑augmented generation (RAG) enhances LLM outputs by incorporating relevant external documents at inference time, improving factual accuracy. Lastly, diffusion-based text generation methods offer a non‑autoregressive alternative that can balance speed and fluency by iteratively refining text representation. Together, these diverse generation models underpin the latest advances and use cases in AI‑powered text creation.

AI text generation tools create and provide ready-made templates to create high quality content like: 

1. OpenAI GPT-5

OpenAI offers an API that enables developers to integrate GPT-4 and GPT-4o into their products. These models support a wide range of text generation tasks, including chatbots, content creation, and summarization. For non-developers, OpenAI provides ChatGPT, an intuitive interface built on its GPT models. This makes advanced AI capabilities accessible to anyone—whether for drafting content, answering questions, or experimenting with conversational AI.

2. Google’s Gemini

Google Gemini is an emerging AI model that combines natural language processing with advanced multimodal capabilities. It’s designed to generate high-quality text and integrate seamlessly with Google’s suite of tools.

3. Microsoft Copilot Studio

Microsoft Copilot Studio is a low-code tool designed for businesses to create and customize AI-powered Copilots(chatbots and virtual assistants). It integrates Microsoft Copilot with Power Platform, allowing users to build, deploy, and manage AI assistants for customer service, internal support, and automation.

4. Hugging Face

Hugging Face offers a wide array of pre-trained models and tools for text generation, including GPT, BERT, T5, and more. It is popular among developers for its flexibility and ease of use in deploying AI models. The tool also provides an Inference API, allowing users to quickly deploy and use text generation models without needing to manage the underlying infrastructure.

5. Jasper AI

Jasper AI (formerly Jarvis AI) is a tool specifically designed for marketers and copywriters. It helps generate marketing copy, blog posts, and other types of content, with features for optimizing and customizing the output.

Furthermore, they offer collaboration and commercial rights to the produced content, making them useful for business processes. Please feel free to read our article on generative AI tools if you want to learn more about and compare these tools.

6. Copy.ai

Copy.ai focuses on helping businesses create marketing copy, product descriptions, and social media posts. It offers a user-friendly interface where users can input their requirements and generate content within minutes.

7. Writer

Writer is an AI-powered writing assistant designed specifically for businesses. It helps teams produce on-brand content consistently, offering suggestions that align with company guidelines.

Use Cases of AI-Generated Text

Using AI text generation tools, businesses can save time, allocate employees’ time for creative projects, generate error-free texts, and streamline their processes. 

There are a number of different ways that AI text generation tools can be used in business, such as:

1. Content Creation for Marketing

AI text generation automates the production of blog posts, ad copy, newsletters, and social media captions. Businesses leverage LLMs to create SEO-friendly, engaging, and scalable content tailored to different audience segments.

  • Blog Posts and Articles: AI tools can generate structured blog posts and articles on a variety of topics, helping marketers scale their content production while maintaining quality.
  • Social Media Content: AI can create engaging social media posts tailored to various platforms, enabling brands to maintain a consistent online presence.
  • Email Campaigns: Automated generation of personalized email content, from promotional messages to newsletters, helps businesses engage their audiences more effectively.

2. Copywriting and Ad Creation

AI tools create compelling ad copy for various platforms, including Google Ads, Facebook, and LinkedIn, optimizing for conversions and engagement.

  • Product Descriptions: AI can generate detailed, SEO-optimized product descriptions for e-commerce websites, reducing the workload for content teams.
  • Ad Copy: AI-generated ad copy can be tailored for different audiences and platforms, optimizing for clicks and conversions.

3. Customer Support and Chatbots

AI-powered chatbots provide instant, accurate responses to customer inquiries, addressing various topics from FAQs to complex troubleshooting, thereby enhancing customer satisfaction.

  • Automated Responses: AI-powered chatbots can manage routine customer questions, offer troubleshooting tips, and complete basic transactions, helping to speed up responses and enhance customer satisfaction.
  • Personalized Assistance: AI can generate customized responses based on customer history and preferences, making interactions more tailored and human-like.

4. SEO Content Optimization

  • Keyword-Rich Content: AI can generate content optimized for search engines by incorporating relevant keywords and adhering to best SEO practices.
  • Meta Descriptions and Tags: Automated generation of meta descriptions and tags helps improve the discoverability of content online.

5. Personalized Communication

  • Customer Outreach: AI can generate personalized messages for outreach campaigns, whether for sales, marketing, or customer service purposes, increasing engagement rates.
  • Dynamic Content Generation: Websites and applications can use AI to generate dynamic, personalized content for users based on their behaviors and preferences.

6. Educational Content and Tutoring

AI assists educators and students by generating lesson plans, quizzes, explanations, and feedback. It also provides personalized tutoring and language-learning support.

  • Customized Study Materials: AI can create personalized study guides, quizzes, and instructional content tailored to a student’s learning style and progress.
  • Automated Tutoring: AI-powered tools can provide instant feedback, explanations, and even generate practice problems for students.

7. Summarization of Large Texts

  • Document Summarization: AI can condense lengthy documents, reports, or articles into concise summaries, making it easier for users to quickly grasp key information.
  • News Summaries: Media organizations utilize AI to generate summaries of news articles, enabling readers to stay informed without needing to consume entire articles.

8. Script and Story Generation

  • Creative Writing: AI is used to generate scripts for movies, TV shows, and video games, or to develop plot ideas and character dialogues, providing inspiration or even entire drafts for writers.
  • Interactive Stories: In gaming and interactive media, AI can generate dynamic storylines that adapt to player choices, creating more immersive experiences.

AI text generation assists with contract drafting, compliance reporting, and summarizing legal documents. It helps legal teams process vast amounts of text more efficiently.

  • Contract Generation: AI can draft contracts, agreements, and other legal documents based on predefined templates and input parameters, saving time for legal professionals.
  • Case Law Summarization: AI tools can summarize case law and generate briefs, assisting lawyers in their research and preparation.

10. Academic Research and Writing

AI helps researchers by generating summaries of academic papers, literature reviews, and grant proposals. It also assists in coding and structuring research outputs.

  • Literature Reviews: AI can assist in generating literature reviews by identifying and summarizing relevant research papers.
  • Research Proposals: AI tools can assist in drafting research proposals by generating structured content based on a given topic or hypothesis.

11. Creative Writing and Poetry

AI generates stories, scripts, video dialogue, and creative content for entertainment and media industries.

  • Poem Generation: AI can generate poems with specific themes, structures, or styles, serving as a source of inspiration or collaboration for poets.
  • Storytelling: Authors utilize AI to generate story ideas, develop characters, and even craft entire narratives, exploring new creative possibilities.

12. News and Report Generation

News organizations use AI to generate real-time updates, earnings reports, sports summaries, and financial news. AI assists journalists by drafting stories that can be later refined.

  • Automated News Writing: AI can generate news articles, particularly for financial reports, sports events, and other data-driven stories, freeing up journalists to focus on more in-depth reporting.
  • Business Reports: AI tools can generate business reports, financial summaries, and other corporate documents by analyzing data and presenting it in a clear, structured format.

13. Translation and Localization

  • Automated Translation: AI-powered tools can translate text from one language to another, helping businesses and individuals communicate across language barriers.
  • Localized Content: AI can generate content that is culturally and linguistically adapted for different regions, improving relevance and engagement in global markets.

14. Automated Code Generation

  • Code Snippets: AI can generate code snippets or even entire functions based on natural language descriptions, aiding software development and reducing the time required to write code.
  • Documentation: AI can automatically generate documentation for codebases, making it easier for developers to understand and maintain software projects.

15. Interactive Voice Assistants

  • Conversational Responses: AI-generated text is used in voice assistants like Siri, Alexa, and Google Assistant to provide users with responses that sound natural and relevant.
  • Task Automation: Voice assistants can automate tasks such as setting reminders, sending messages, or controlling smart home devices using AI-generated text.

16. Financial Services & Reporting

AI generates financial reports, loan denial explanations, investment insights, and market forecasts. Banks and asset managers use AI to improve decision-making and transparency.

  • Mastercard applied generative AI for fraud detection, generating synthetic fraudulent transaction data to improve model training in fraud detection accuracy.

17.HR & Recruiting

AI generates job descriptions, interview scripts, and candidate communication templates, streamlining recruiting workflows.

Case Studies

Case Study 1: The Washington Post’s “Heliograf” AI System

The Washington Post developed an AI tool named “Heliograf” to enhance its content creation capabilities, particularly for covering large-scale, data-driven events like the 2016 Rio Olympics and the U.S. Presidential election.

The primary objective was to increase the newsroom’s capacity to produce timely and accurate reports without overburdening the human journalists, who were focused on more complex stories that required in-depth analysis.

Heliograf was engineered to generate concise news updates and articles by processing structured data, such as election results, sports scores, and other numerical information. This AI system was seamlessly integrated into the newsroom’s existing workflow, where human journalists could oversee the AI’s output, making refinements as necessary to ensure the quality of the content.

This approach allowed The Washington Post to efficiently cover a broader range of topics, especially those that might have been overlooked due to limited human resources.

The results were significant. During the Rio Olympics, Heliograf generated approximately 300 short news reports, enabling the newspaper to provide comprehensive coverage of various events. This not only increased the volume of content published but also allowed the editorial team to focus on more critical stories.

Additionally, during the U.S. Presidential election, Heliograf’s ability to quickly and accurately report on local election results enabled The Washington Post to cover more elections than ever before, enhancing their overall reporting and providing readers with timely updates on a broader scale.1

Case Study 2: Alibaba’s AI-Powered Copywriting Tool

Alibaba, the global e-commerce giant, implemented an AI-powered copywriting tool to assist merchants on its platform in creating product descriptions, marketing copy, and other content needed for online listings.

The tool was introduced to address the massive volume of content that millions of sellers required to generate compelling copy to attract customers but often lacked the time or expertise to do so effectively.

The AI copywriting tool, which leverages natural language processing (NLP) and deep learning, can generate up to 20,000 lines of content per second. It was designed to understand the context and tone required for different products and markets, allowing it to produce relevant and engaging copy with minimal human input.

Sellers on Alibaba’s platform could use the tool to create product descriptions by simply inputting a few keywords or phrases, after which the AI would generate multiple variations of the content for them to choose from.

The introduction of this AI tool led to significant improvements in efficiency and content quality across Alibaba’s platform. Merchants reported that the tool helped them save considerable time, allowing them to focus more on their core business activities.

Additionally, the consistent quality of the AI-generated content contributed to better customer engagement and increased sales conversions. Alibaba’s AI-powered copywriting tool has since become an essential resource for sellers, showcasing the potential of AI in streamlining e-commerce operations and enhancing the customer experience.2

Case Study 3: Evaluating claims

Insurance companies evaluate long-written applications in their claims management process to decide whether a case is eligible for the insurance settlement process.

An insurance company faced challenges in processing materials, sharing responsibilities, expediting decision-making, and improving the claim settlement process.3

A deep learning model called sequence-to-sequence architecture was implemented to resolve the problem. This is a neural network type commonly used for machine translation, answering questions, and summarizing text. As a result of the adoption of this model, summaries of applications are generated, which makes the decision-making process faster and prevents the waste of time. 

Case Study 4: AP automated financial report generation

Business reporters produce quarterly financial reports that require gathering the income statement, balance sheets, and cash flow statement of a company. Regularly preparing these reports is time-consuming, reducing the amount of time that can be allocated to writing creative journal articles. 

In order to overcome this problem, Associated Press, which suffers from the same problem, adopted a language generation tool that converts the collected data into a coherent report, allowing for 15-times more financial reports to be generated.4

FAQ

Principal Analyst
Cem Dilmegani
Cem Dilmegani
Principal Analyst
Cem has been the principal analyst at AIMultiple since 2017. AIMultiple informs hundreds of thousands of businesses (as per similarWeb) including 55% of Fortune 500 every month.

Cem's work has been cited by leading global publications including Business Insider, Forbes, Washington Post, global firms like Deloitte, HPE and NGOs like World Economic Forum and supranational organizations like European Commission. You can see more reputable companies and resources that referenced AIMultiple.

Throughout his career, Cem served as a tech consultant, tech buyer and tech entrepreneur. He advised enterprises on their technology decisions at McKinsey & Company and Altman Solon for more than a decade. He also published a McKinsey report on digitalization.

He led technology strategy and procurement of a telco while reporting to the CEO. He has also led commercial growth of deep tech company Hypatos that reached a 7 digit annual recurring revenue and a 9 digit valuation from 0 within 2 years. Cem's work in Hypatos was covered by leading technology publications like TechCrunch and Business Insider.

Cem regularly speaks at international technology conferences. He graduated from Bogazici University as a computer engineer and holds an MBA from Columbia Business School.
View Full Profile
Researched by
Sena Sezer
Sena Sezer
Industry Analyst
Sena is an industry analyst in AIMultiple. She completed her Bachelor's from Bogazici University.
View Full Profile

Be the first to comment

Your email address will not be published. All fields are required.

0/450

We follow ethical norms & our process for objectivity. AIMultiple's customers in AI include Campaigner, CapCut Commerce Pro, Murf.