Shows sales activities where AI can be used. For each activity AI vendors in that activity are also shown

Sales is hard, especially in B2B. Conversion rates are low and sales cycle is longer.  Average demo to closure rates are in single percentage points and sales cycle is long, likely to be months in enterprise sales. Your customers don’t just take out their credit cards to buy things. They need hand-holding and a lot of validation. You need to make calls, meet them in person, answer their concerns and continue to guide them after sales to ensure that you build a healthy relationship with them. Artificial intelligence can make this a bit easier.

As a sales leader, you may be hearing that artificial intelligence will rule the world. You hear giants like Dell and Cisco using AI in sales. You imagine a future where all sales are done by cheap yet effective AI assistants. We are not there yet essentially because AI is not as mature enough to handle complex conversations and relationship building required in sales. AI today does not aim to replace sales reps but acts as an assistant to

  • Help them automate repetitive tasks like data entry and meeting scheduling or complicated jobs that do not require personal relationships like sales forecasting
  • Enable them to prioritize more effectively and become a better salesperson by highlighting patterns in customer responses
  • Provide team leaders with detailed analytics on all communication between sales reps and potential clients including emails, phone calls and chats.

We have identified 15 artificial intelligence use cases and structured these use cases around 4 key activities of today’s sales leaders. We are currently focused on inside sales, for example, a retail sales function has different main activities and therefore different AI use cases. Our framework is by no means comprehensive but it is ever improving so please let us know if you have any comments and suggestions.

Primary sales activities and AI use cases in these activities are:

Forecast sales

Demand forecasting

Forecasts are complicated but automatable. AI allows automatic and accurate sales forecast based on all customer contacts and previous sales outcomes. Give your sales personnel more sales time while increasing forecast accuracy. For more information on AI-powered demand forecasting, feel free to check our article.

Enable sales reps

Better prioritization can enable sales reps to better use their time. Sales reps normally leverage their experience from the last 5-10 years to decide which prospect to focus on. However, AI systems can leverage data from hundreds of sales reps to understand the factors that increase a prospect’s likelihood to buy and help your sales reps focus on the right prospects.

Lead generation

If you like your sales reps, give them leads! Without leads, sales reps spend precious time searching for leads instead of closing deals. For more info, please visit our explanatory article about lead generation.

Predictive sales/lead scoring

After lead generation, it is necessary to determine the priority of leads. These platforms score customers’ likelihood of converting based on 3rd party and company data, allowing your sales reps to prioritize effectively. For more info, please visit our explanatory article about predictive sales.

Another source of data for lead prioritization is your company’s traffic. Website identification tools can help businesses manage the prioritization of leads using how potential customers interact with your company’s digital properties. These tools enable you to identify leads that spend time on the company website and provides company contact information. You define the criteria of how a high-quality lead looks like and then these platforms send “trigger reports” into your sales reps’ inbox automatically.

Sales content personalization and analytics

Once priority customers are decided, sales reps serve them better with sales content personalized to their needs and preferences. Leads’ engagement rate increases with personalized content, businesses convert visitors and retain customers.

Sales rep next action suggestions

AI will analyze your sales reps’ actions and leads will be analyzed to suggest the next best action. No one wants to waste time on email setting up a demo, when they could be closing another deal.

Automate sales activities

Simple activities or activities that do not require relationship building can be automated.

Sales data input automation

AI will synch data from various sources effortlessly and intelligently into your CRM

Sales rep response suggestions

AI will suggest responses during live conversations or written messages with leads

Meeting setup automation (digital assistant)

Leave AI to set up meetings freeing your sales reps time. For example, Calendy links e-mails and conversations to your calendar while Clara responds to your e-mails and organizes your meetings.

Sales rep chat/email bot

Leave AI to do all the talking until she is ready to handover. AI can create customized emails that are specific to a person and helps sales reps outreach prospects without wasting time on writing tons of emails.

In-store sales robots

This is mostly relevant in B2C. Physical bots are trialed in various types of stores. Lowe’s has been experimenting with LoweBot in collaboration with Fellow Robotics since 2016. Given the costs and difficulty to replace humans in diverse tasks, it seems that these bots are going to remain niche in the next few years.

AI Avatar

As your sales AI Avatar learns, it gets more intelligent and automatically creates digital marketing interactions with leads. This is another application that can increase the engagement of customers since humans are more comfortable interacting with human-like beings. For example, Dave.ai is AI Avatar vendor that helps businesses visualize home lifestyle products in concept rooms with the help of VR and provides AI-powered recommendations.

Sales analytics & performance manage reps

Sales attribution

Leverage big data to attribute sales to marketing and sales efforts accurately

Customer sales contact analytics

Analyze all customer contacts including phone calls or emails to understand what behaviors and actions drive sales. Share these insights with all your sales force to promote productivity.

Price optimization

Machine learning based dynamic pricing tools enable businesses to change the product’s price based on real-time data including customer’s price perception.

Layout optimization

In B2C retail sales, AI-powered analytics helps businesses optimize in-store/ webpage layout based on customer behavior data.

For more, feel free to read our article on sales analytics.

Now that you know about AI applications in sales, you can read more about these application in our section on AI in sales. Or you can check out AI applications in marketingcustomer service, IT, data or analytics. And if you have a business problem for which there could be an AI based solution:

Let us find the right vendor for your business

Leave a Reply

Your email address will not be published. Required fields are marked *

*
*