Any new company needs to first make its marketing funnel work. Acquiring and retaining customers are the lifeblood of any business. Once a business can retain customers, building better monetization options are worth spending time and effort.

First, as we explained on our previous post where we defined dynamic pricing, pricing is a very attractive lever for monetization. Once pricing is as effective as possible, recommendations are easy to implement and can provide significant revenue upside. It is easy to get confused about recommendation systems as they are also called recommender systems, recommendation engines. All of these mean the same thing, a system that predicts what your customers want.

Applicable areas

Almost any business can benefit from a recommendation system. There are two important aspects that determine how much a business benefits from a recommendation system:

  • Breadth of data: A business serving only a handful of customers that behave in different ways will not receive much benefit from an automated recommendation system. Humans are still much better than machines in the area of learning from a few examples. In such cases, your employees will use their logic, qualitative and quantitative understanding of customers to make accurate recommendations.
  • Depth of data: Having a single data point on each customer is also not helpful to recommendation systems. Deep data about customers online activities and if possible offline purchases can guide accurate recommendations

With this framework, we can identify businesses that stand to gain from recommendation systems:

  • e-Commerce: Industry where recommendation systems were first widely used. With millions of customers and data on their online behavior, e-commerce companies are best suited to generate accurate recommendations
  • Retail: Target scared shoppers back in 2000s when Target systems were able to predict pregnancies even before mothers realized their own pregnancies. Shopping data is the most valuable data as it is the most direct data point on a customer’s intent. Retailers with troves of shopping data are at the forefront of companies making accurate recommendations
  • Media: Similar to e-commerce, media businesses are one of the first to jump into recommendations. It is difficult to see a news site without a recommendation system.
  • Banking: A mass market product that is consumed digitally by millions. Banking for masses and SMEs are prime for recommendations. Knowing a customer’s detailed financial situation, along with their past preferences, coupled by data of thousands of similar users is quite powerful.
  • Telecom: Shares similar dynamics with banking. Telcos have access to millions of customers whose every interaction is recorded. Their product range is also rather limited compared to other industries, making recommendations in telecom an easier problem.
  • Utilities: Similar dynamics with telecom but utilities have an even narrower range of products, making recommendations rather simple.


  • Increased sales/conversion: There are very few ways to achieve increased sales without increased marketing effort. Once you setup an automated recommendation system, you get recurring additional sales without any effort. Thanks to recommendations, tech giants are boosting their sales&engagement. %35 of Amazon purchases, 75% of Netflix viewing is driven by recommendations according to McKinsey.
  • Increased user satisfaction: Shortest path to a sale is great both for you and your customer reducing their effort. Recommendation systems allow you to reduce your customers’ path to a sale by recommending them an appropriate option sometimes even before they search for it.
  • Increased loyalty and share of mind: By getting customers to spend more on your website, you can increase their familiarity with your brand and user interface, increasing their probability to make future purchases from you.
  • Reduced churn: Recommendation system powered emails are one of the best ways to re-engage customers. Discounts or coupons are other effective yet costly ways of re-engaging customers and they can be coupled with recommendations to increase customer’s probability of conversion.

Setting up a recommendation system

Recommendation systems in the market today use a logic like: customers with similar purchase and browsing histories will purchase similar products in the future. To make such a system work, you either need a large number of historical transactions or detailed data on your user’s behavior on other websites.

There are plenty of vendors as you can see on our vendor list for recommendation systems. You can use historic or even better, live data to test effectiveness of their systems. Including code snippet of the vendor may be enough to get started.

More data and better algorithms improve recommendations. You need to both make use of all relevant data in your company and make sure you expand your customer data with 3rd party data providers like the ones we listed. If a regular customer of yours has been looking for red sneakers on other websites, why shouldn’t you show them a great pair when they visit your website?

Choosing a partner

Recommendation systems are one of the earliest and most mature AI use cases. There are 50+ vendors providing services. Some of the vendors are listed below. Visit our guide on recommendations systems to see all the vendors and learn more about recommendation engines. founder Marc Benioff has done his part of revolutionizing the software industry “world’s first comprehensive AI for CRM.” Einstein recommendations can be easily integrated to your offering if you are already a Salesforce customers.


It isn’t often that we hear that an 18-month-old startup raised $56 million by Goldman Sachs. Antuit is quite well funded.


The founder and CEO of Clarifai Matt Zeiler is an AI expert with a Ph.D. in machine learning from NYU. Clarifai has proven its image recognition capabilities since winning the top five places in image classification at the ImageNet 2013 competition. Leveraging clarifai system, e-commerce companies can offer similar looking merchandise as recommendations.

AI is not only applied to recommendation personalization. You can check out AI applications in marketing, sales, customer service, IT, data or analytics. And if you have a business problem that is not addressed here:

Let us find the right vendor for your business

Leave a Reply

Your email address will not be published. Required fields are marked *