No results found.
Ekrem Sarı

Ekrem Sarı

AI Researcher
20 Articles
Stay up-to-date on B2B Tech

Ekrem is an AI Researcher at AIMultiple, focusing on intelligent automation, GPUs, AI Agents, and LLMOps for RAG frameworks.

Professional Experience

During his tenure as an Assessor at Yandex, he evaluated search results using proprietary frameworks and automated protocols. He implemented QA testing through data annotation, relevance scoring, and user intent mapping across 10,000+ queries monthly, while conducting technical assessments, including performance monitoring and spam detection using ML feedback loops.

Research Interest

At AIMultiple, his research is centered on the MLOps lifecycle and the performance and benchmarking of end-to-end AI systems. He contributes to a wide range of projects, including Retrieval-Augmented Generation (RAG) optimization, extensive Large Language Model (LLM) benchmarking, and the design of agentic AI frameworks. Ekrem specializes in developing data-driven methodologies to measure and improve AI technology performance across critical operational metrics like accuracy, efficiency, API cost, and scalability.

His analysis covers the entire technology stack, from foundational components like embedding models and vector databases to the high-performance GPU and cloud infrastructure required for deploying AI agents.

Education

Ekrem holds a bachelor's degree from Hacettepe Üniversitesi and a master's degree from Başkent Üniversitesi.

Latest Articles from Ekrem

DataNov 24

Remote Browsers: Web Infra for AI Agents Compared

AI agents rely on remote browsers to automate web tasks without being blocked by anti-scraping measures. The performance of this browser infrastructure is critical to an agent’s success. We benchmarked 8 providers on success rate, speed, and features.

AINov 20

Relational Foundation Models: SAP vs. Gradient Boosting

We benchmarked SAP-RPT-1-OSS against gradient boosting (LightGBM, CatBoost) on 17 tabular datasets spanning the full semantic-numeral spectrum, small/high-semantic tables, mixed business datasets, and large low-semantic numerical datasets.

AINov 17

Benchmark of 11 Best Open Source Embedding Models for RAG

Most embedding benchmarks measure semantic similarity. We measured correctness. We tested 11 open-source models on 490,000 Amazon product reviews, scoring each by whether it retrieved the right product review through exact ASIN matching, not just topically similar documents. Open source embedding models benchmark overview We evaluated retrieval accuracy and speed across 100 manually curated queries.

AINov 12

Multi-GPU Benchmark: B200 vs H200 vs H100 vs MI300X

For over two decades, optimizing compute performance has been a cornerstone of my work. We benchmarked NVIDIA’s B200, H200, H100 and AMD’s MI300X to assess how well they scale for Large Language Model (LLM) inference. Using the vLLM framework with the meta-llama/Llama-3.1-8B-Instruct model, we ran tests on 1, 2, 4 and 8 GPUs.

AIOct 27

Context Engineering: Maximize LLM Grounding & Accuracy

LLMs often struggle with raw, unstructured data such as email threads or technical documents, leading to factual errors and weak reasoning. We benchmarked systematic context engineering and achieved up to +13.0% improvement in task accuracy, confirming that structured context is key to enhancing performance in complex tasks.

AIOct 19

GPU Concurrency Benchmark: H100 vs H200 vs B200 vs MI300X

I have spent the last 20 years focusing on system-level computational performance optimization. We benchmarked the latest NVIDIA GPUs, including the NVIDIA (H100, H200, and B200) and AMD (MI300X), for concurrency scaling analysis. Using the vLLM framework with the gpt-oss-20b model, we tested how these GPUs handle concurrent requests, from 1 to 512.

CybersecurityOct 8

Top Bot Management Platforms

Bot management identifies real users, good and bad bots, safeguarding websites, APIs, and digital assets from automated threats.

AISep 9

Top 20+ Agentic RAG  Frameworks

Agentic RAG enhances traditional RAG by boosting LLM performance and enabling greater specialization. We conducted a benchmark to assess its performance on routing between multiple databases and generating queries. Explore agentic RAG frameworks and libraries, key differences from standard RAG, benefits, and challenges to unlock their full potential.

AISep 9

Text-to-SQL: Comparison of LLM Accuracy

I have been relying on SQL for data analysis for 18 years, beginning with my days as a consultant. Translating natural-language questions into SQL makes data more accessible, allowing anyone, even those without technical skills, to work directly with databases.

AISep 1

Hybrid RAG: Boosting RAG Accuracy

Dense vector search is excellent at capturing semantic intent, but it often struggles with queries that demand high keyword accuracy. To quantify this gap, we benchmarked a standard dense-only retriever against a hybrid RAG system that incorporates SPLADE sparse vectors.