No results found.
Ekrem Sarı

Ekrem Sarı

AI Researcher
21 Articles
Stay up-to-date on B2B Tech

Ekrem is an AI Researcher at AIMultiple, focusing on intelligent automation, GPUs, AI Agents, and LLMOps for RAG frameworks.

Professional Experience

During his tenure as an Assessor at Yandex, he evaluated search results using proprietary frameworks and automated protocols. He implemented QA testing through data annotation, relevance scoring, and user intent mapping across 10,000+ queries monthly, while conducting technical assessments, including performance monitoring and spam detection using ML feedback loops.

Research Interest

At AIMultiple, his research is centered on the MLOps lifecycle and the performance and benchmarking of end-to-end AI systems. He contributes to a wide range of projects, including Retrieval-Augmented Generation (RAG) optimization, extensive Large Language Model (LLM) benchmarking, and the design of agentic AI frameworks. Ekrem specializes in developing data-driven methodologies to measure and improve AI technology performance across critical operational metrics like accuracy, efficiency, API cost, and scalability.

His analysis covers the entire technology stack, from foundational components like embedding models and vector databases to the high-performance GPU and cloud infrastructure required for deploying AI agents.

Education

Ekrem holds a bachelor's degree from Hacettepe Üniversitesi and a master's degree from Başkent Üniversitesi.

Latest Articles from Ekrem

AIJan 9

Benchmark of 16 Best Open Source Embedding Models for RAG

Most embedding benchmarks measure semantic similarity. We measured correctness. We tested 16 open-source models, from 23M-parameter to 8B-parameter embeddings, on 490,000 Amazon product reviews, scoring each by whether it retrieved the right product review through exact ASIN matching, not just topically similar documents.

AIDec 30

RAG Frameworks: LangChain vs LangGraph vs LlamaIndex vs Haystack vs DSPy

We benchmarked 5 RAG frameworks: LangChain, LangGraph, LlamaIndex, Haystack, and DSPy, by building the same agentic RAG workflow with standardized components: identical models (GPT-4.1-mini), embeddings (BGE-small), retriever (Qdrant), and tools (Tavily web search). This isolates each framework’s true overhead and token efficiency.

AIDec 29

Text-to-SQL: Comparison of LLM Accuracy in 2026

I have relied on SQL for data analysis for 18 years, beginning in my days as a consultant. Translating natural-language questions into SQL makes data more accessible, allowing anyone, even those without technical skills, to work directly with databases.

AIDec 26

RAG Monitoring Tools Benchmark in 2026

We benchmarked leading RAG monitoring tools to assess their real-world impact on latency and developer experience. Our results show that:  Results & Analysis The following table summarizes the latency performance of the RAG pipeline under different monitoring instrumentations: Key finding: All tools are production-ready All tested observability platforms introduce negligible latency overhead.

AIDec 25

Hybrid RAG: Boosting RAG Accuracy in 2026

Dense vector search is excellent at capturing semantic intent, but it often struggles with queries that demand high keyword accuracy. To quantify this gap, we benchmarked a standard dense-only retriever against a hybrid RAG system that incorporates SPLADE sparse vectors.

AIDec 17

Supervised Fine-Tuning vs Reinforcement Learning in 2026

Can large language models internalize decision rules that are never stated explicitly? To examine this, we designed an experiment in which a 14B parameter model was trained on a hidden “VIP override” rule within a credit decisioning task, without any prompt-level description of the rule itself.

AIDec 9

RAG Evaluation Tools: Weights & Biases vs Ragas vs DeepEval vs TruLens

Failures in Retrieval Augmented Generation systems occur not only because of hallucinations but more critically because of retrieval poisoning. In such cases, the retriever returns documents that share substantial lexical overlap with the query but do not contain the necessary information.

AIDec 5

Top Vector Database for RAG: Qdrant vs Weaviate vs Pinecone

Vector databases power the retrieval layer in RAG workflows by storing document and query embeddings as high‑dimensional vectors. They enable fast similarity searches based on vector distances.

AIDec 5

Best RAG Tools, Frameworks, and Libraries in 2026

RAG (Retrieval-Augmented Generation) improves LLM responses by adding external data sources. We benchmarked different embedding models and separately tested various chunk sizes to determine what combinations work best for RAG systems. Explore top RAG frameworks and tools, learn what RAG is, how it works, its benefits, and its role in today’s LLM landscape.

AIDec 5

Embedding Models: OpenAI vs Gemini vs Cohere in 2026

The effectiveness of any Retrieval-Augmented Generation (RAG) system depends on the precision of its retriever. We benchmarked 11 leading text embedding models, including those from OpenAI, Gemini, Cohere, Snowflake, AWS, Mistral, and Voyage AI, using ~500,000 Amazon reviews.