AIMultiple ResearchAIMultiple Research

AI Platforms: Guide to ML life cycle support tools in 2024

Research indicates that organizations have a hard time productizing machine learning models. AI platforms help businesses build, manage and deploy machine learning and deep learning models at scale. It makes AI technology more attainable and affordable by reducing software development work such as data management and deployment.

What is an AI platform?

An AI platform is a set of services that support the machine learning life cycle. This includes support for gathering and preparing data as well as training, testing, and deploying machine learning models for applications at scale.

An illustration of machine learning life-cycle
Source: Javapoint

How does it work?

AI Platforms have layers that allow organizations to deploy machine learning models from a variety of frameworks, languages, platforms, and tools. These layers can be separated into three categories:

Data and Integration layer allows easy access to data from various systems so AI algorithms can be trained. The data should be in good quality so that the AI scientists are able to build the data flows without spending time on data quality improvement. Data management tools provide similar functionality.

Experimentation layer enables Data Scientists to generate and verify a hypothesis. A good experimentation layer automates processes such as feature engineering, feature selection, model selection, model optimization and model interpretability. AutoML tools also provide similar functionality.

Operations and Deployment layer is where the model risk assessment is managed so that the model governance team or compliance team can verify the model. This layer also offers tools for controlling the deployment of models across the enterprise. For example, AI platforms can deploy and scale machine learning models on multiple infrastructure providers. This saves machine learning engineers from dealing with the details of deploying their model on different infrastructures to serve different enterprise applications.

Why is it important now?

With the rise of citizen data scientist, accessibility of AI and analytics tools are important. AI platforms are helpful tools to democratize and productize ML models by providing tools for managing the end-to-end machine learning life cycle. They achieve this through a SaaS interface designed to simplify user interactions for less-specialized technical personnel. Without these platforms, the influence of AI technology would be limited since a higher share of resources would be spent on building and maintaining models.

Gartner’s survey highlights that productizing ML models is one of the most important barriers towards delivering business value from machine learning:

Organizations are experience difficulty while deploying AI into business processes/applications
Source: Gartner

What are its use cases?

AI platforms can be used in every situation where machine learning is involved.

What are alternative ML deployment options?

Internal bespoke development

What it is: Developing a machine learning program with internal resources.

Technical Requirements: High. It requires coding and mathematical/statistical expertise for building machine learning models. Due to high technical requirements, only the largest technology companies or well-funded AI-focused startups can effectively build a machine learning application with internal resources.

Outsourced bespoke development

What it is: Hiring an AI specialist or an AI company to handle the development

Technical Requirements: Comparably lower than internal bespoke development. It requires skills of problem framing, value-adding solution finding, data management and integration with business processes.

What are the major AI platform solution providers?

  • 5 Analytics
  • Algorithmia
  • Datatron
  • Knime
  • Numericcal
  • Peltarion
  • Seldon

Algorithma and Peltarion are the leading vendors in the space that have raised $37.9 M and $36.4 M total fundings, respectively. 

We have also prepared a sortable, prioritized list of AI platforms including leading software that supports various steps in the machine learning life cycle.

AI platforms can help organizational transformation. If you wonder how you can apply AI Transformation within your organization, we recommend this article.

If you have any question, contact us:

Find the Right Vendors
Access Cem's 2 decades of B2B tech experience as a tech consultant, enterprise leader, startup entrepreneur & industry analyst. Leverage insights informing top Fortune 500 every month.
Cem Dilmegani
Principal Analyst
Follow on

Cem Dilmegani
Principal Analyst

Cem has been the principal analyst at AIMultiple since 2017. AIMultiple informs hundreds of thousands of businesses (as per similarWeb) including 60% of Fortune 500 every month.

Cem's work has been cited by leading global publications including Business Insider, Forbes, Washington Post, global firms like Deloitte, HPE, NGOs like World Economic Forum and supranational organizations like European Commission. You can see more reputable companies and media that referenced AIMultiple.

Throughout his career, Cem served as a tech consultant, tech buyer and tech entrepreneur. He advised businesses on their enterprise software, automation, cloud, AI / ML and other technology related decisions at McKinsey & Company and Altman Solon for more than a decade. He also published a McKinsey report on digitalization.

He led technology strategy and procurement of a telco while reporting to the CEO. He has also led commercial growth of deep tech company Hypatos that reached a 7 digit annual recurring revenue and a 9 digit valuation from 0 within 2 years. Cem's work in Hypatos was covered by leading technology publications like TechCrunch and Business Insider.

Cem regularly speaks at international technology conferences. He graduated from Bogazici University as a computer engineer and holds an MBA from Columbia Business School.

To stay up-to-date on B2B tech & accelerate your enterprise:

Follow on

Next to Read


Your email address will not be published. All fields are required.